A New Extension of the Kalman Filter to Nonlinear Systems
نویسندگان
چکیده
The Kalman filter(KF) is one of the most widely used methods for tracking and estimation due to its simplicity, optimality, tractability and robustness. However, the application of the KF to nonlinear systems can be difficult. The most common approach is to use the Extended Kalman Filter (EKF) which simply linearises all nonlinear models so that the traditional linear Kalman filter can be applied. Although the EKF (in its many forms) is a widely used filtering strategy, over thirty years of experience with it has led to a general consensus within the tracking and control community that it is difficult to implement, difficult to tune, and only reliable for systems which are almost linear on the time scale of the update intervals. In this paper a new linear estimator is developed and demonstrated. Using the principle that a set of discretely sampled points can be used to parameterise mean and covariance, the estimator yields performance equivalent to the KF for linear systems yet generalises elegantly to nonlinear systems without the linearisation steps required by the EKF. We show analytically that the expected performance of the new approach is superior to that of the EKF and, in fact, is directly comparable to that of the second order Gauss filter. The method is not restricted to assuming that the distributions of noise sources are Gaussian. We argue that the ease of implementation and more accurate estimation features of the new filter recommend its use over the EKF in virtually all applications.
منابع مشابه
A New Adaptive Extended Kalman Filter for a Class of Nonlinear Systems
This paper proposes a new adaptive extended Kalman filter (AEKF) for a class of nonlinear systems perturbed by noise which is not necessarily additive. The proposed filter is adaptive against the uncertainty in the process and measurement noise covariances. This is accomplished by deriving two recursive updating rules for the noise covariances, these rules are easy to implement and reduce the n...
متن کاملRotated Unscented Kalman Filter for Two State Nonlinear Systems
In the several past years, Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) havebecame basic algorithm for state-variables and parameters estimation of discrete nonlinear systems.The UKF has consistently outperformed for estimation. Sometimes least estimation error doesn't yieldwith UKF for the most nonlinear systems. In this paper, we use a new approach for a two variablestate no...
متن کاملRobust Tracking Control of Satellite Attitude Using New EKF for Large Rotational Maneuvers
Control of a class of uncertain nonlinear systems, which estimates unavailable state variables, is considered. A new approach for robust tracking control problem of satellite for large rotational maneuvers is presented in this paper. The features of this approach include a strong algorithm to estimate attitude, based on discrete extended Kalman filter combined with a continuous extended Kalman ...
متن کاملRobust Tracking Control of Satellite Attitude Using New EKF for Large Rotational Maneuvers
Control of a class of uncertain nonlinear systems, which estimates unavailable state variables, is considered. A new approach for robust tracking control problem of satellite for large rotational maneuvers is presented in this paper. The features of this approach include a strong algorithm to estimate attitude, based on discrete extended Kalman filter combined with a continuous extended Kalman ...
متن کاملDesign and Implementation of a Kalman Filter-Based Time-Varying Harmonics Analyzer
Nowadays with increasing use of numerous nonlinear loads, voltage and current harmonics in power systems are one of the most important problems power engineers encounter. Many of these nonlinear loads, because of their dynamic natures, inject time-varying harmonics into power system. Common techniques applied for harmonics measurement and assessment such as FFT have significant errors in presen...
متن کاملTime Delay and Data Dropout Compensation in Networked Control Systems Using Extended Kalman Filter
In networked control systems, time delay and data dropout can degrade the performance of the control system and even destabilize the system. In the present paper, the Extended Kalman filter is employed to compensate the effects of time delay and data dropout in feedforward and feedback paths of networked control systems. In the proposed method, the extended Kalman filter is used as an observer ...
متن کامل